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I ABSTRACT (U)

SI ;Inventories and summaries of sound velocity, bathymetry, and botto-m

characteristics have been compiled for three areas in the North Atlantic Ocean
between 159 and 659 N latitude and east of 50' to 65" W longitude. The
following information is contained in this report: seasonal inventories of

"sound velocity profiles extending deeper than deei, axial depth, charts of the
seasorvil extent and overage axial depth of the v.pter sound channel, charts of
the annual 4strengthO of the upper sound channel; charts of the annual extent
and average depth of the subsurface sound velocity maximum, annual contour

charts of deep axial depth; charts showing bathymetry shoaler than critical

depth for summer and winter; an index of the best available bathymetric contour
I charts; inventories of surficial bottom sediment samples; chcrts of surficial

bottom sediment analysis by groin size classes; an inventory of bottom cores;

and a partial inventory of continuous seismic profiles. In addition, a brief
analysis is given of water masses that effect sound velocity structures.

DON F. FENNER
PAUL J. BUCCA

ICHARLES L. DAVIS

Ui Undersea Surveillance Oceanographic Project
Ocean Science Department

I Science and Engineering Center

* This report has been reviewed and approved for release as a
U CONFIDENTIAL Informal Report.

S~I
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Director
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INTRODUCTIONl

U By j Mve :ro-*au-' Vfr 'Jndersea Sjrve laonc GtOcen-ýýI`WŽc Certer
dated 6 Julg-j 1970, •'NR Conev 102-OS requested ihao iau ,nvenfccrle5 and

Ssummaries of sound •.eltc f, bthymet-', and bottom- C'1 raccerisf'Cs be

A provided for three priort? aremas ,n the North AtInt,,c Ocean see Figure I,.

"NAVOCEANO letter s-r 3768 of 4 August 1970 sated tho, the fzllowng

SU informat:on would be provided

3 * Sound veloc ty profile nventories per one-dearf-e square per

standard three-month season

* Areal contours of the deep sound channel axis on an annial basis

o Areal contours of the upper sound channel oxis and depth of the

-•i subsurface sound velocity, maximum on a seasonal and 'or annual

basis along with an ;ndication of the "strength of the upper
sound channel

1 o Charts showing the height and extent of oottom features shoaler

than critical depth for summer and winter

* Index charts showing the most accurate available bathymetric

charts end their compilation dates

o Charts showing the distribution of surficial sediments classified

by principle grain size constituetits

* Charts showing a partial inventory of bottom cores.

In addition, a partial inventor1 of continuous se;sm'c profiles is incluoed.

(U) Information on the parameters cited above oas been organiz-d ;n three

j sections, each corresponding to one of the three privrity areas shown on F-gure I.
In order to maintain a page size presentation, the three areas have been broken

into a total of eight subareas. Figure designations are consistent according to th4

following system:

a Roman numerals designate the priority area (e.g., I, 11, or I11)

* Arabic numerals designate the parameter within each priority area

(e.g., the number of winter oceanographic observations per one-

degree square deeoer than deep axial depth is Figure 1-2, 11-2, or

UNCLASSIFIED

SI



S~UNCLASSIFIED

V. , 
,..,.(

_____ .. L _ _ '

SI *hI"

I 
$

"11

> 1. 
t -.-

ll--



UNCLASSIFIED

a Letters designate subareas within priority areas (e.g., Figures I-2A,
I-2B, and I-2C).

(U) The locations of these subareas c:e shown on Figures I-1, I1-1, aod I11-1.
* For purposes of this report, deep axial depth is defined as the deepest sound

velocity minimum (usually absolute minimum). Crit;cal jepth is defined as that
P depth where the sound velocity is equal to the maximum sound velochit found
"* I at the surface or in the surface mixed layer.

""J !SOUND VELOCITY PROFILE INVENTGRIES

(U) Figures 1-2A through I-5C, I1-2A through II-5C, and 11l-2A through
111-5B show the number of existing sound velocity observations per one-degree
square for the four standard seasons of winter (January through March), spring
(April through June), summer (July through September), and outumn (October

4.through December. All observations shown on these figures extend deeper than
the deep sound channel (see Figures 1-12, 11-12, and 111-12). The four standard
seasons were chosen since the area includes tropical to subarctic conditions.
These figures are based upon the following data s

* National Oceanographic Data Center (NODC) seasonal ýound
velocity summaries containing all Nansen cast data extending
deeper than 50 meters processed as of the dates shown on
Figure 2

a Sound velocimeter and Nansen cost data from the following
NAVOCEANO Marine Geophysical Survey (MGS) Atlantic
Task Areas:

- Alpine Area SF (NAVOCEANO, Dec 1966)
- Alpine Area ST (NAVOCEANO, Aug 1968)
- Alpine Area I (NAVOCEANO, Sep 1966a and Feb 1967a)
- Texas Instruments (TI) Area 2 (NAVOCEANO, Feb 1968)

"- TI Area 3 (NAVOCEANO, May 1968)
- TI Area 5 (NAVOCEANO, Feb 1967b and Jun 1967)4 - TI Area 7/4 (NAVOCEANO, May 1969)

a Sound velociraeter data, furnished by Woods Hole Oceanographic
Institution, from the following cruises:

1 - R/V ATLANTIS Cruise No. 282, Jul 1962
- R/V ATLANTIS 11 Cruise No. 11, Jun 1964

3 UNCLASSIFIED
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- R/V ATLANTIS II Cruise No. 22, Ju:•Aua 1966 (Beckerle, Oct 1968)
- R/V CHAIN Cruise No. 82, Aug-Sep 1968 (Katz, Jun 1969)

if - R/V CHAIN Cruise No. 8,9, Mar 1969 (LaCasce, et al., Jun 1969)

r! * Sound velocimeter data taken by Larnont-Doherty Geological Observa-
tory during Nov-Dec 1963, Apr-May 1964, and Jun-Jul 1965 (Piip,
Jan 1966, Jun 1967, and Apr 1968, respectively)

* Sound velocimeter data taken by tlV.e USNS KANE during Jun-Jul 1970
as part of Phase I of the Northeast Atlantic Basin (NEAB) surveys
(courtesy of C. Ostericher, Deep Ocean Surveys Division, NAVOCEANO)

o All available Nansen cast and salinity-temperature-depth (STD) recorder
data taken as part of the Barbados Oceanographic and MeteorologicalJ Experiment (BOMEX) by the following ships:

- USCGSS OCEANOGRAPHER, USCGC RAINIER, and USCGC
(Environmental Science Services Administration, Dec 1969)

- USNS GILLIS and R/V ADVANCE II (courtesy of P. Mozeika,
NAVOCEANO BOMEX Coordinator)

* Additional Nansen cast and STD data taken in support of the
Intematicial Ice Patrol by the following ships:

- USCGC EVERGREEN, Apr-Jul 1966 (Wolford, Jun 1966)I |- USCGC EDISTO, Sep-Oct 1967 (Codispoti and Kravitz, May 1968)
- USCGC WESTWIND, Sep-Oct 1919 (Bunce, Apr 1970)

0 Additional Nansen cast data taken in support of the International
Commission for the Northwest Atlantic Fisheries (ICNAF) in 1963

""I as follow:

)g - at OCEAN WEATHER STATION POLAR FRONT I and II (some as
OWS ALFA), Jun-Jul

- by RS THALASSA, Apr
- by CV AEGIR, May
-by RS ACADEMICIAN KNIPOVITCH, Jun

- by USCGC EVERGREEN, Jul
- by R/V EXPLORER, Jul

5 (published by ICNAF, 1968)

I
1 •,!l5 UNCLASSIFIED
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* Additional Canadc'n Nansen casf data taken by the following ships:

- CSS HUDSON, Mar-Jul 1966 (Canadicn Oceanographic Data
Centre (CODC), 1969a)

- CSS BAFFIN, Apr-May 1966 (CODC, 1969b)
- CSS HUDSON, Jan-Mar 1967 (CODC, 196 9 c)

* Fleet Numerical Weather Central (Monterey) expendable bathythermo-
graph (XBT) data processed as of 1 June 1970

o Additional XBT, sound velocimeter, and Nansen cast data taken a,
part of the first Northeast Atlantic (NEAT I) experiment during
Sep-Oct 1969 by the USI14S GIBBS, R,'V CHAIN and ACS ST.
MARGARETS (courtesy of Acoustics Division, NRL)

. * Additional XBT data taken by the USNS G2IBBS during May-Jun 1969
and Apr 1970 (courtesy of H. Fleming and G. Shaffer, Acoustics
Division, NRL).

In addition, all available Nansen cast and sound ve!ocimeter data taken by
Project CAESAR in the North Atlantic Ocean between 1954 and 1967 (indexed
by Bunce, Aug 1969) and by the NAVOCEANO Ocean Survey Program (OSP)
are included in these figures. Nansen cast and SD data were converted ;nto
sound velocity profiles using the equation of Wilson (1960). Various XBT data
were converted into sound velocity profiles using the equation of Wilson arid
historical salinity correction factors.

UPPER SOUND CHANNEL

(U) Figures 1-6 through 1-9, Figures 11-6 through 11-9, and Figures 111-6
through 111-9 show the areal extent and average axial depth of the upper sound
ch'annel for each of the four standard seasons. In constructing these figures,
seasonal upper axial depths were compiled by one-degree square and averaged
on a two-degree square (i.e., four one-degree squares) basis. Two-degree
square averages then were contoured. on an areal basis. Regions where an
upper sound channel is present mo'e than 80% of the time, 20-80% of the time,
"and less than 20% of the time are indicated on each figure. For purposes of

A !the following discussion, the first case above wili be referred to as a permanent
upper sound channel, the second as transitory. In the third case, an upper
sound channel effectively is absent.

(U) During winter, a permanent upper sound channel is present only east
of about 200 W longitude between Cape Finisterre and the Canary Island.; (see

6 UNCLASSIFIED
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SFigure 11-6). A transitory Jpper sound channel surrounds this region north to
- about 490 N latitude and west to the Azores Islands. A trarsitory upper sound
1 channel also is present during winier *n a small area east of Grand Bank. (see

Figure 1-6) and throughout the Sargasso Sea (see Figure 111-6). In the Canary
I and Iberian Basins, upper axial depths range from appruximately 300 meters

near Cape Finisterre to greater than 900 meters north of the Canary Islands.
Sj South of the Canary Islands, the upper axial depths decrease. Axial depths in
I the Sargasso Sea and off Grand Banks range between 100 and 300 meters

during winter, and are corsiderably shoaler than those in the Canary Basin.
This situation prevails during all seasons.

I (U) During spring, there is a permanent upper sound channel east of about
L /20*W longitude between the Canary Islands and Iceland (see Figures 1-7 and

11-7) and in a small area east of Bermuda (see Figure 111-7). However, during
spring there are transitory upper sound channels north of about 250 N latitude
except over the Mid-Atlantic Ridge and in the Labrador Basin. In the Canary
and Iberian Basins, upper axial depths range from less than 300 meters off
Cape Finisterre to greatc: than 903 meters in the vicinity of the Canary Islands.
Throughout the remainder of the three areas, upper axial depths range between
100 and 200 meters.

(U) During summer, there is a permanent upper sound channel east of about
200 W longitude between the Canary Islands and Iceland, throughout the basin
south of Iceland, and across the Reykjanes Ridge into the central Labrador Basin
(see Figures 1-8 and 11-8). There is also a permanent upper sound channel in the
Sargasso Sea (see Figure 111-8). The summer extent of the transitory uppek sound
channel is similar to that during spring, with two exceptions: transitory upper
sound channels are present farther to the west in the Labrador Basin during summer
but are absent over largec sections of the Mid-Atlantic Ridge ncrth of the Azores
Islands. Upper axial depths in the Canary and Iberian Basins ar. approximately
the same during spring and summer (300-900 meters). However, throughcut
Areas I and III summer axial depths range between 150 and 200 meters; while
in Area II, upper axial depths are greater than 200 meters.

(U) During autumn, a permanent upper sound channel is present east of
about 200 W longitude between the Canary Islands and the Faeroe Plateau (see
Figures 1-9 and 11-9) and in a local area east and south of Bermuda (see Figure

111-9). The extent of transitory upper sound channel is similar during spring and
autumn. Upper axial depths in the Canary and Iberian Basins are similar to
those during spring and summer. However, in the region north of Cape Finisterre
and east of the Mid-Atlantic Ridge, autumn axial depths average about 200
meters (the deepest during the year). In the Sargasso Sea, autumn axial depths

also are approximately 50 meters deeper than during summer. In the western

7 10:2( UNCLASSIFIED
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half of Area I, autumn data are either insufficient to evaluate or in! rficient to
contour. However, axial depths probably ore somewhat deeper during autumn
than summer in this region.

'U) The causes of an upper sound channe! ,-ost of the. Mid-Atlantic Ridge
have been described by Fenner and Buc..,, (Dec 1969). Briefly, south of about
430 N latitude (Cape Finisterre), an upper sound channel is formed by the

interaction of relatively warm, saline Mediterranean Intermediate Water (MIW)
with colder, more dilute North Atlantic Central Water (NACW) carried by art
extension of the North Atlantic Current. In this case, upper axial depths coincide
with the bottom of the NACW layer. North of about 500 N latitude, an upper
sound channel is formed by warming of surface and near-surface layers charac-
terized by permanent or transient positive velocity gradients during winter. In
this case, upper axial depths correspond roughly with the maximum depth of
summer warming. However, in cases where the maximum depth of summer
warming exceeded the maximum depth of winter cooling, an upper sound channel
was not found (e.g., south of the Canary Islands and over the Mid-Aflantic
Ridge). Between 430 and 50' N latitude, an upper sound channel is formed by
warming of surface layers combined with interaction of MIW and NACW. This
latter region is characterized by a relatively strong oceanic front from the
surface to depths in excess of 1200 meters caused by the inteiaction of NACW;
a cold, dilute flow at depth (Arctic Intermediate Water - AIW); and MIW.
Transitory upper sound channels generally were found in regions where various
causative forces were attenuated (e.g., regions of MIW dilution, regions where

winter cooling is attenuated by warm surface currents, etc.).

(U) West of the Mid-Atlantic Ridge ,western half of Area I and Area Ill),
upper sound channels apparently are caused by spring, summer, and autumn
warming of the surface and near-surface layers. Such a hypcthesis explains
the lack of a widespread upper sound channel during winter throaghout Area
I and the greater extent of a transitory upper sound channel in the Labrador

2• Basin curing sunmer than during spring. Preferential summer warming in the
regions influenced by the Irminger Current may explain the permanent upper
sound channel west of the Reykjanes Ridge durnng summer. The localized
occurrence of a transitory upper sound channel east of the Grord Banks during
winter probably is a result of intensive mixing of waters carried by the North
Atlantic and Labrador Currents. In the Sargao•so Sea, an upper sound channel
was associated with the "18' Water" of Worthington (1959). Somewhat cooler
winter conditions near Bermuda and the relative absence of "18' Water" during
winter throughout the Sargasso Sea may explain the cbsence cf a permanent
upper sound channel diring winter in Area Ill.

8 UNCLASSIFIED
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(U) Figures 1-10, 11-10, and 111-10 show the annual average "strength" of
the upper sound channel (;f present) relative to the subsurface sound velocity
maximum. This parameter was compiled by one-degree square and season,

Scaveraged by two-degree square on an annual basis, and generalized into seven
categories. It is presented by two-degree squares on an annual bcsis because
of the large temporal and spatial variability throughout the three areas.

P Generally, "A", "B", or "C" values (i.e., 6 to greater than 10 meters/
*� "second) indicate the effects of high concentrations of MIW and,/or extreme

winter cooling followed by intensive summer warming. "D" and "E" values
(i.e., 2 to 6 meters/second) generally indicate the effects of intermediate
concentrations of MIW and,/or averGge winter cooling and summer warming
conditions. "F" and "G" values (0. 1 to 2 meters/second) generally are
associated with transitory upper sound channels and,'or subsurface soundveoct maxima and indicate attenuation of causative forces. The reader

is cautioned that two-degree square values of this parmeter often mask
specific seasonal and areal tendencies.

SUBSURFACE SOUND VELOCITY MAXIMUM

I (U) Figures 1-11, I1-11, and Il1-11 show the annual areal extent and
"3verage axial depth of the subsurface sound velocity max;., um. This parameter
-was compiled by one-degree square and season, averaged by two-degree square

on an annual basis, 3nd then contoured on an areal basis. An annual presenta-
tlon was chosen for this parameter since seasonal two-degree square averages
vary by less than 100 meters from comparable annual averages throughout most
of the three areas. However, in the vicinity of the Canary Islands, from 430
and 500 N latitude between about 150 and 30° W longitude, on either side of
Iceland, and along 40° N latitude between 500 and 650 W longitude there are
large seasonal variations in the depth of the subsurface sound velocity maximum.
All of these regions roughly correspond to frontal zones either at the surface,I at intermediate depths, or both. Regions where a subsurface sound velocity
maximum is present greater than 80% of the time, 20-80%o of the time, and less

i than 20% of the time are indicated on each figure. For purposes of the follow-
ing discussion, the f:rst case above will be referred to as a permanent subsurface
sound velocity maximum and the second as a transitory subsurface sound velocityI maximum. In the third case, a subsurface sound velocity maximum effectively
is absent.

I (U) A permanent subsurface sound vel.,city maximum is present throughout
1:•J the year east of about 200 W longitude behteen the Ct.nary Islands and Iceland,

Sthroughout the ba-in south of Iceland, and across the Reykjanes Ridge into the
central Labrador Basin (see Figures I-il and Il-11). This areal extent is similar
to that of the permanent upper sound channel during summer. There is also a

9 UNCLASSIFIED

1-



UNCLASSIFIED

pernanent subsuriijc .oond velocity maxiryum in separate regi'-r~s souti. ao,4 east
of the Gran 1 Bank- ajnd in th, central Sargasso Sea (see Figures 1-11 and 01-1-).
Transitory subsurfa(.t' sou,,d K,. i.,,ty n,;mo J are found throughout all three a"eas
north of about 25" N !ot;tudc• xcept over the Mid-At!antlc R~dge, in a region
directly off GronrJ BanI. s, rind ,n t.e northern Labrador Basin. The annual average
depth of the subsurface sound velocity moximum east of the Mid-Atlantic Ridge
decrcases to the north from 1300 meters near the Canary Islands to less than 500
meters south of Iceland. West of the Mid-At~antic Ridge, depths range from less
than 200 meters in the north to greater than 400 meters in the central Sargasso
"Sea.

U) In the Northeast Atlantic ,east of 300 W longitude), subsurface sound
") velociy maxima ere caused solely by MIW south of about 43' N latitude, by

winter cooling north or about 50' N latitude, and by a combination of both
factors between about 43' and 5?O N latitude and in the deep water channel
between the Faeroe Plateau jrnd Purcupine Bank •Fenner and Bucca, Dec 1969).
In the first region, tY:- depth Af 11i:. parameter coincided well with the depth
of the MIW high solinity core salinity maximum). Irn the second region, the
depth of the subsurface •ourd veOocity maximum coincided roughly with the
"maximum depth of winter cooling. In the third region, MIW was found to

accentuate the depth of subsurface sound velocity maxima originally formed
by winter cooling.

(U) West of 30* W longitude (i.e., in thp western half of Area I and in
Area Ill), subsurface sound velocit~y maxima are considerably shooler than
those in the Northeast Atlantic and roughly coincide either with layer depths
or the bottom of the -18' Water" layer. Therefore, both the temporal and
Toatial variability o,. this parameter anv greater west of the Mid-Atlantic
Ridge. Despite intensive winte, cooling throughout the Labrador Sea (to
depths in excess of 500 meters), subsurface sound velocity maxima similar to
those north of Porcupine Bank are not p'esent in the western half of Area I.
This is largely due to extremell, low solinity water carried by the Labrador

and West Greenland Currents ,less than 34.9 '/0o according to Lee and Ellett,
1967). In this region, winter cooling causes positive velocity gradients through-

out the water column ýsee Figure 1-12), and .ummer warming cau.es a deep
SIsound channel axis at a depth somewhat below the absolute salinity minimum

(often at the su'face). Therefore, a subsurface sound velocity maximum is not

formed despite intensive winter cooiing. The tongue with subsurface sound

velocity maxima at greater than 400 meters that lies west of the Reykjanes Ridge

at about 600 N latitude is apparently feloted to higher salinity and wormer

waters that are transported by the Irmirger Current. This tongue corresponds

well with the shape of isohalines and isotherms shown by Wust and Defant (1936)

at 400 ana 600 meters.
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I0 The Polar Front is shown clearly in the rapid transition of subsurfac.;

5 sound velocity maxima on either side of Iceland. Transitional rcy9;Ons aiso
are found along the northern boundary of Area III (northern wall of Gulf
Stream), in the region extending from about 430 to 500 N latitude between
about 150 and 30* W long*,ude (frontal zone coused by interaction of NACW,
AIW, and MIW), and in the vicinity of the Caiary Islands 'region of rapid

Sr Idilution of MIW). In all these regions of rapic transition, the so: ,urface sound
Si velocity maximum tends to merge with either t'ie upper or deep sound channel

to form a basically trilinear sound velocity profile.

•I DFI:r SOUND CHANNEL

J I(U) Figures 1-12, 11-12, and ii1-12 show contours of the annual axial depth
of the deep sound channel. This parameter was compiled and contoured in a
manner similar to that used for the subsurface sound velocity maximum. An
annual presentai'ion was chosen for deep axial depth since in an',, given two-
degree square seasonal variations were as great as annual varictions. In
additio-,, deep axial depths at any given latitude generally are not directly
related to the annual heating and cooling cycle (i.e., deeper values in
summer, shoaler values in winter). A deep sound channel is found throughoutI the year in all three areas except in regions off Grand Banks and south and
east of Greenland (see Figure 1-12). In these two regions, intensive cooling
results in positive velocity gradients during the colder months of January
through April. Durinq :he summer, a deep sound channel is formed in these
two regions by warming of the surface and near-surface layers. In a small
region off Cape Farvel, positive velocity gradients are present throughout the
year.

(U) Annual deep aoial depths in the North Atlantic range from greater than
2000 meters off the Iberian coast (see Figure 11-12) to less than 100 meters off
the Grand Banks and Greenland (see Figure 1-12). Two major features are
apparent in the overall deep axial dcpth structure. The first consists of a
tongue with anomalously deep values of this parameter that extends west

S4 southwest from the Iberian Coast across the North Atlantic to Bermuda. This
tongue is bounded by the 1200-meter deep axial depth isoline and its shape
corresponds well with the preferential flow of h~gh salinity MIW shown by
Worthington (1970). Deep axial depths shoal markedly to the north and south
of this tongue. The second major feature consists of a tongue with anomuIlously
shoal values of this parameter than extends along about 55' N latitude from
aL-out 400 to about 200 W !ongitude. This tongue is bounded by the 900-meter
deep axial depth isoline and its shape corresponds well with the 35.0 %/ a and
less isohalines shown at 400, 600, and 800 meters by Wust and Defant (1936).
The latter tongue corresponds to the flow of low salinity AIW. Deep axial
depths tend to deepen to the north and south of 550 N latitude.

11 ... (UNCLASSIFIED
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(U) Zones of rapid chonge in deep axial depth are found to the east and
west of Iceland (Polar Front), soutl-, and east of Grand Banks (at confluence
of the Gulf Stream, 'North Atlantic Current system and the Labrador Current),
and in the vicinity of the Canary Islands (region of rapid dilution of MIW).
The extremely broad deep sound channel south of about 300 N latitude in both
Areas II and III apparently is a result of diluted concentrations of high salinity
MIW (Fenner and Bucco, Dec 1969). However, in the southwest corner of
Area III, toie width of the channel is constricted by intrusion of low salinity
Antarctic Intermediate Water (AAIW) from the south. In the western half of
Area I, the sound chan,'-" also is narrower because of low salinity AIW.

BATHYMETRY SHOALER THAN CRITICAL DEPTH5U) Figures 1-13, 11-13, and 111-13 show the a..--,,nt of bathymetry extending
above average critical depth during the composite six-month winter season
(Nov-Apr). Figures 1-14, H1-14, and 111-14 show the same parameter tr'r the
composite six-month summer season (May-Oct). These composite seosons were
chosen because of the lack of data in various regions of the North Atlantic
during one or more of the four standard seasons. In addition, six-month depth
difference charts show relatively small changes in 500-fathom contours at
three-month intervals. In preparation of these figures, critical depths were
compiled by one-degree square for each of the two seasons, averaged by two-

*degree square, and then contoured on ar areal basis. Bathymetric charts then
were overlayed with the critical depth contours and areas where bathymetry
extended above critical depth were outlined. Except in the Nkortheast Atlantic
between 30' and 60' N latitude east of 30* W longitude, bathymetric charts
compiled by NAVOCEANO for the National Intelligence Survey (NIS) prior
to 1960 were used in constructing these figure-. In the Northeast Atlantic, the
charts of A. S. Laughton (National Institute of Oceanography, Wormley,
England) were used. Critical depth contours are based on NODC serial sound
velocity profiles processed as of January 1969, supplemented by sound velocl-
"meter and Nansen cast data from the MGS and CAESAR programs and sound
velocim•ter data from Woods Hole Oceanographic Institution and Lamont-
Doherty Geological observatory.

-" (U) During both sease,,: substantial ireas of bathymetry stoaler than critical
depth are associated with major physiographic features such as the Mid-Atlantic
Rida,, the Reykjanes Ridge, the Faeroe Plateau, Porcupine Bank, various sea-
mounts west of Gilbraltar, the Canary Rise, the Bermuda Rise, the New England
Seamounts, and the Grand Banks. The amount of bathymetry shoaler than
critical depth is less during winter than during summer in all cases because of
th? shallower critical depths during this seascn. Of particular interest is the
lesser amount of bathym!try shoaler than criticai depth associated with the
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I
New England Seamounts, Bermuda Rise, and the intersection of the Reykjanes
and Mid-Atlantic Ridge.s G;Obbs Fracture Zone) during winter (compare Figures
1-13 and 1-14 and Figures 111-13 and 111-14).

I BATHYMETRIC INDEX CHARTS

SI (U) Figures 1-15, 11-15, and 111-15 are indices of the best available
I bathymetrlc contour charts for the three LRAPP priority areas. Four types of

charts were used incompiling these figures:

II * NAVOCEANO North Atlantic Regional Charts compiled in 1969

I,# * Charts of A. S. Lai, qhton (National Institute of Oceanography,
Wormley, Englan•• cýrnpled in 1966

w,, NA2'OCý4NO Bathymetric Contour charts (BC's) contoured in
the indicated years

* Charts contoured prior to 1960 as part of the NationclI, Intelligence Survey (NIS) program.

Individual, large-scale charts of specific le-l-tions or bathyretric features have
J not been included on these indices.

SURFICIAL BOTTOM SEDIMENTS

Figures 1-16, 11-16, and 111-16 show the location by one-degree square
j of bottom sediment samples held by NAVOCEANO. These figures reflect the

same data distribution shown on Figure V-6 o; H.O. Publication No. 700
(NAVOCEANO, 1965). Therefore, the bibliography contained in the above
publication also applies to the three figures. There are large variations in
the quantity and quality of bottom sediment data throughout t-he three areas.
Only a few shallow neorshore regions have been sampled adequately.

Figures 1-17, 11-17, and 111-17 show the classification of surficial
I bottom iediments on the basis of principle grain size constituents. These

figures were taken directly from Figures V-7 and V-8 of HO. Publication
No. 700 (NAVOCEANO, 1965). Generally, coarser sediments are found

over the Mid-Atlantic and Reykjanes Ridges and on the continental shelves.
Other regions primarily contain muds, sands, an-I mud-sands.
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"BOTTOM CORE INVENTORIES

(U) Figures 1-18, 11-18, and 111-18 show the location by one-degree square
3f unclassified bottom cores held by NAVOCEANO. A recently updated
computer plot of tFese cores was provided by E. Wilcox, Oceanographic
Analysis Division, NAVOCEANO. Cores indexed on these figures vary
considerably in length and in type and quality of analysis.

CONTINUOUS SEISMIC PROFILE INVENTORIES

(U) Figures 1-19, 11-19, c.id Ill- 19 shuw a partial inventory of continuous
seismic profiles of the subbottom on a one-degree square grid. These figures
are based on the following data sources.

All data collected in the following NAVOCEANO MGS Atlantic
Task Areas:

- Alpine Area SF (NAVOCEANO, Feb 196 7 c)
- Alpine Area ST (NAVOCEANO, Aug 1968)
- Alpine Area I (NAVOCEANO, Sep 1966b)

~ - Texas Instruments (TI) Area 2 (NAVOCEANO, Mar 1968)
- TI Area 3 (NAVOCEANO, Oct 1968)
- TI Area 5 (NAVOCEANO, .an 1967)
- TI Area 7/4 (NAVOCEANO, Apr 1969)

e All data collected on Cruise 9 of the USNS KANE (Lowrie and
Escow~tz, 1969)

* Data collected by the Woods Hole Oceanographic Institution on the
following cruises of the R/V CHAIN:

- No. 7, 1959 (Dunkle and Hays, May 1966)
S- No. 21, 1961 (Ibid.)

-No. 34, 1962 (Ibid.)
- No. 36, 1963 (Ibid.)
- No. 39, 1963 (Ibib.)
- No. 43, 1964 (Ibib.)
- No. 4.4, 1964 (Ibib.)
- No. 70 and No. 73, 1967 (Knott, et al., Jul 1968)
- No. 82, 1968 (Dunkle, Jun 1969)
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s Data collected by the Lamont-Doherty Geological Observatory
aboard the R/A/ VEMA and R/V CONRAD, as contained in the
following references:

J - Ewing, et al. (1960)
- Wilson (1963)

P - Ewing, et al. (1964)
- Jones and Ewing (1969).

Major oceanographic, geological, and geophysical journals and serial publica-
I tions from major nationa! and international oceanographic institutions and

organizations have been searched in preparing these figures. Tracks shown on
these figures represent profiles taken with sparker, boomer, and air gun systems.
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